Texture segmentation based on features in wavelet domain for image retrieval

نویسندگان

  • Ying Liu
  • Si Wu
  • Xiaofang Zhou
چکیده

Texture is a fundamental feature which provides significant information for image classification, and is an important content used in content-based image retrieval (CBIR) system. To implement texture-based image database retrieval, texture segmentation techniques are need to segment textured regions from arbitrary images in the database. Texture segmentation has been recognized as a difficult problem in image analysis. This paper proposed a block-wise automatic texture segmentation algorithm based on texture features in wavelet domain. In this algorithm, texture features of each block are extracted and L2 distance between blocks are calculated; a pre-defined threshold is used to determine if two blocks should be classified into same class, hence belong to same textured region. Results show that the proposed algorithm can efficiently catch the texture mosaics of arbitrary images. In addition, features of each textured region can be obtained directly and used for image retrieval. Applying various thresholds instead of uniform threshold to different blocks according to their homogeneity property, texture segmentation performance can be further improved. Applied to image database, the proposed algorithm shows promising retrieval performance based on texture features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Texture Segmentation Towards Content-based Image Retrieval

Extended Abstract: Texture segmentation is an important but challenging task in image analysis or computer vision applications. Among various cues, texture plays a vital role towards object recognition. Recent studies reveal the two popular methods for texture analysis: filter bank methods and Gray level cooccurrence matrices (GLCM). In this work, we have proposed several texture features in th...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Region-Based Image Retrieval using Wavelet Transform

Content-based image retrieval, which provides convenient ways to retrieve images from large image databases, has been studied actively. While many previous image retrieval techniques do not look at regions in an image, regionbased image retrieval techniques have been gaining attention recently. We propose a region-based image retrieval method which performs image segmentation and indexing using...

متن کامل

Features extraction and supervised classification intended to image retrieval

This work propose a method of heterogeneous image retrieval based on a combination of features vectors. The features extraction results from image segmentation, color histograms and texture which based on wavelet transform. Three classifiers were tested and the results are highlighted with a real improvement at the level of the relation between accuracy and computing times.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003